3-days' lift

- went over 1999 exam (on web site)
- went over handout
 Pepper & Heinrich
 on upwinding.

Transient problems, pg 324
section 7.5.3
Same system of eqns.

\(\text{eqn. 7.7a} [C] \mathbf{\dot{\phi}} + [K]\{\phi\} = \{R(t)\} \)
\[\mathbf{\dot{\phi}} = \left(\frac{d\phi}{dt} \right) = \begin{bmatrix} \frac{d\phi_1}{dt} \\ \frac{d\phi_2}{dt} \\ \vdots \\ \frac{d\phi_n}{dt} \end{bmatrix} \]

Note: \([C]\) and \([K]\) may depend on time and/or \(\phi\). But we will linearize problem by taking these constant.

let \([C] = [C_n] \) and \([K] = [K_n] \)
\[n = \text{present time} \quad \text{current time} \]
To solve eqn 7.77a, let

\[\phi = \frac{\phi_{n+1} - \phi_n}{\Delta t} \]

Substitute into 7.77a

\[\phi_{\theta} = (1-\theta)\phi_n + \theta \phi_{n+1} \]

\[R_{1\theta} = (1-\theta)R(t_n) + \theta R(t_{n+1}) \]

Get 7.78 "a"

\[\left[\frac{\partial \Phi}{\partial t} \right] \left[\phi_{n+1} \right] = \left[(1-\theta)[k] + \left[\frac{C}{\Delta t} \right] \phi_n \right] + \left[\left(-1 \left[k \right] + \left[\frac{C}{\Delta t} \right] \right) \phi_n \right] \]

Reurrence relation
new lamps = for old \[\Theta \] integral

if \[\Theta = 1 \] \[\Rightarrow \] analogous to "fully implicit calculation"

if \[\Theta = \frac{1}{2} \] \[\Rightarrow \] analogous to "crank nicolson" scheme

if \[\Theta = 0 \] \[\Rightarrow \] analogous to explicit scheme (node-by-node evaluation)

But look at eqn

\[
\frac{[C]}{\Delta t} \{ \Phi_{n+1} \} = \left[-[K] + \frac{[C]}{\delta t} \right] \{ \Phi_n \} + \{ R_n \}
\]

[\[C \] matrix is not diagonal]

\[[C] \] is diagonal then node-by-node evaluation is possible