1) For the problem below, find a feedforward gain, K_{ff}, such that the system will have zero steady-state error for a unit step input. Prepare a Simulink simulation that verifies your results.

$$\frac{100}{(S+1)(S+5)(S+30)}$$

2) Change the 100 in the open-loop transfer function above to 110 and perform a Simulink simulation with the same values of K_{ff} and K_p from problem #1. What do you conclude about feed-forward controllers?

3) The system shown below is a Type 0 system without the PI controller. The addition of a non-zero term for K_2 guarantees the steady-state error will eventually be zero, but it does not guarantee satisfactory system performance.

 a) With $K_2 = 0$, select the proportional gain (K_1) such that the closed loop roots have a damping ratio of 0.707.

 b) Select the integral gain term, K_2, according to the procedure given in the text.

 c) Prepare a Simulink simulations and plot the unit step response of the system under the following three conditions:

 i) your K_1, $K_2 = 0$

 ii) your K_1 and your K_2, and

 iii) your K_1 and $K_2 = 5*(your ~K_2$ from part b)

What conclusion can you draw about the effectiveness of the PI controller? How could you improve the performance of the system?