HW #9 – My Solution

- Found motion profile solution in Cartesian coordinates x_0, z_0

\[A_{\text{max}} \]

- Found inverse kinematic solution in joint coordinates d_1, θ_2 for each x_0, z_0

\[V_{\text{max}} = \frac{1}{4} A_{\text{max}} T, \quad S_{\text{max}} = \frac{1}{8} A_{\text{max}} T^2 \]

\[\text{Time, sec} \]

\[\text{Acceleration, A} \]

\[A_{\text{max}} \]

\[\text{Displacement x} - \text{All 4 straight lines} \]

\[\text{Displacement x} \]

\[\text{Displacement, inch} \]

\[\text{Time, sec} \]

\[\text{Displacement, inch} \]

\[\text{Joint 1 - Acceleration} \]

\[\text{Acceleration a} - \text{All 4 straight lines} \]

\[\text{Acceleration, in/sec}^2 \]

\[\text{Time, sec} \]
Joint 2 - Displacement

Displacement θ_2 - All 4 straight lines

Displacement, radians

Time, sec

Joint 1 - Displacement

Displacement d_1 - All 4 straight lines

Displacement, in

Time, sec

Joint 1 - Velocity

Velocity v_1 - All 4 straight lines

Velocity, in/sec

Time, sec

HW #9 – Practical Solution

- Found motion profile solution in Cartesian coordinates x_0, z_0 - 0.125 sec increments

A_{max}

Acceleration, A

$V_{max} = \frac{1}{2} A_{max} T$, $S_{max} = \frac{1}{8} A_{max} T^2$

- Found inverse kinematic solution in joint coordinates d_1, θ_2 for each x_0, z_0

- Linearly interpolate during each 0.125 time increment