1. What is the primary limiting factor in the maximum torque capability of a stepper motor? Why is there a difference in the "peak" torque and the "continuous" torque?

2. Why does a brushless DC motor require position sensing? Why is "torque ripple" a bigger problem than with conventional PM DC motors?

3. Name three sensors that are commonly used to measure joint positions on a robot. Give the primary advantage and disadvantage of each type of sensor.

4. A question about robot safety

5. A question about robot workcells

6. Fu, Gonzalez and Lee recommend a “4-3-4” joint trajectory as shown below. What are the conditions that must be satisfied in order to solve for the unknowns in the equations that describe these trajectories?

![Figure 4.2 Position conditions for a joint trajectory.](image-url)
1. A small, 5x4 section of a much larger digitized image is given in the table below. Fill out the remaining tables with the results from the selected image processing algorithm.

Use the original image for each of the algorithms - not the results of the previous algorithm

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>56</td>
<td>105</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>100</td>
<td>98</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>110</td>
<td>100</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>47</td>
<td>105</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>53</td>
<td>55</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

2. For the motion profile given below, determine the velocity and displacement at all key points using graphical integration techniques. What type of motion program is this profile suited for?

![Motion Profile](image)

3. Given the motor/pulley/cable/load system shown, determine the motor torque required to accelerate the 3 lb load at 25 ft/sec² upwards. Assume no friction in the system.

Note – standard gravity acts downward
4. Design an A-T diagram that meets the following specifications:
 a) used for a Rise-Return motion program
 b) total displacement over 0.8 seconds is 12 inches
 c) maximum acceleration/deceleration of 100 inches/sec²

5. A small object (denoted by the dark squares) is located within the 15x15 grid below. The origin of the image is in the upper left-hand corner. For this single object, find
 • area (number of pixels),
 • X and Y centroids (pixels from upper left corner - \textit{round to closest integer},
 • Y and Y “second moments” of inertia - about centroidal axes
 • use the results from the previous step to find the orientation of the principal axes

Note - these calculations will be easier - and just as accurate - if you assume that the row (or column) value refers to the \textit{center} of the pixel - not the corner.