Solve problem in 2 steps:
- First, determine what Q_L must be to maintain ice production. Use first law for open c.v.
- Use Carnot refrigerator to determine minimum power input required to maintain that rate of heat rejection.
1st Problem

Process Description: 555°F freezing of water

\[T = 500°F \quad T_0 = 25°F \]

Analysis Plan

State model: incompressible, substance

Laws: 1st law 555°F process

\[Q + m_i (h_a + g \cdot z_i) = W + m_i (h + g \cdot z_e) \]

Assumptions

1) Pressure atmospheric
2) OPE, oku no
3) Ice sat, water sat

Implications

Freeze flat \(c \), reflect \(1 \)st law

Easy boiler up

1st Law 16

\[Q = m_c (h_a + h_i) \quad \text{sat solid water @ 25°F} \]

\[Q = m_c (h_a + h_i) \quad \text{sat liquid water @ 50°F} \]

\[Q = 10 \frac{\text{Btu}}{\text{hr}} (-146.9 + 18.06) \frac{\text{Btu}}{\text{hr}} = -1640.9 \frac{\text{Btu}}{\text{hr}} \Rightarrow \dot{Q}_L = 1640.9 \frac{\text{Btu}}{\text{hr}} \]

2nd Problem

C.O.F.R. = \(\frac{\dot{Q}_L}{W_{in}} \Rightarrow W_{out} = \frac{\dot{Q}_L}{COP_R} \]

from thermal Trans C.T. \(\text{min} = \frac{T_0}{T_u - T_0} = \frac{485}{40} = 12.125 \)

\(W_{out, min} = \frac{\dot{Q}_L}{COP_{max}} = \frac{1640.9}{12.125} = 135.3 \frac{\text{Btu}}{\text{hr}} \)
2 a) P must be constant, because T is constant and phase is changing

b) 1st law for closed system w/ OPE OK ~ 0

\[U_2 - U_1 = Q_2 - P \Delta V \]

\[Q_2 = h_2 - h_1 \]

for constant P

\[W_2 = P \Delta V \]

\[\text{from A - II at 100 KPa (1 bar)} \]

\[T = -26.43°C \]
\[h_1 = 215.06 \text{ kJ/kg} \]
\[S_1 = 0.9395 \text{ kJ/kg K} \]
\[S_2 = 0.0678 \]

since don't know mass, calc/unit mass

\[q = h_2 - h_1 = h_g - h_f = h_f = 215.06 \text{ kJ/kg} \]

from 2nd law: \[S_2 - S_1 > \frac{\Delta Q}{T} \]

\[\Delta Q = T(s_2 - s_1) \]

\[\Delta Q = (273.1 + 26.43)(0.9395 - 0.0678) \]

\[= 215.06 \text{ kJ/kg} \]