1 kg of sat vapor R134a in a closed system @ 8°C is heated in a constant volume process in which 100 kJ of energy is added via heat transfer. Calculate the final temperature and pressure and the work done.

Summary

Sketch:

- Const volume, no other interactions
- w/surroundings described

Given:
- \(m = 1 \text{ kg} \)
- \(T_1 = 8°C \)
- \(\text{sat vapor} \)
- \(V \text{ constant} \)
- \(q_L = 100 \text{ kJ} \)

Find:

- \(w_2 = 0 \)
- \(P \)
- \(T \)

Process Description

Ident:
- Const volume, heat addition

Diagram:

- States:
 - \(1 \)
 - sat vapor
 - \(T = 8°C \)
 - \(m = 1 \text{ kg} \)
 - \(2 \)
 - \(m = 1 \text{ kg} \)

Analysis Plan

At \(v = 0.0521 \text{ m}^3/\text{kg} \):

<table>
<thead>
<tr>
<th>(T) [°C]</th>
<th>(P) [bar]</th>
<th>(u) [kJ/\text{kg}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>5.836</td>
<td>330.1</td>
</tr>
<tr>
<td>130</td>
<td>6.000</td>
<td>339.4</td>
</tr>
<tr>
<td>140</td>
<td>6.168</td>
<td>348.9</td>
</tr>
</tbody>
</table>

\(u_2 \) in this range. Interpolate to get \(T \) and \(P \):

\[
\frac{331.46 - 330.1}{339.4 - 330.1} = 0.0146 \Rightarrow \frac{T}{120 + 0.146(130 - 120)} = 121.5°C
\]

\[
\frac{P}{5.836 + 0.146(5.836 - 5.836)} = 0.186 \text{ bar}
\]

State Model:

1 kg vapor table for 134a

Govn Eqns and Defns:

1st law

Assumptions:

1) \(Q = 0 \)
2) no work interaction

Implications:

\(E_2 - E_1 = U_2 - U_1 \)

Strategy:

1) get sat \(u_1 \) data (done above)
2) solve 1st law to get \(u_2 \)
3) use \(v_2 = v_1 \) and \(u_2 \) to fix chart 2, then get \(T, P \)

Extra:

\[
\frac{\Delta u}{m} = \frac{\Delta q}{m} = \frac{100 \text{ kJ}}{1 \text{ kg}} = 331.46 \text{ kJ/°C}
\]

\[
\frac{u_2 - u_1}{1 \text{ kg}} = \frac{\Delta q}{1 \text{ kg}} = 331.46 \text{ kJ/°C}
\]