An inverse problem of identifying Robin's coefficient

Slim Chaabane and Mohamed Jaoua

ENIT-LAMSIN
BP 37, 1062 Tunis-Belvédère, Tunisie
Tel : 00216 (1)872 700, Fax : 00216 (1)872 729,
e-mail : mohamed.jaoua@enit.rnu.tn

We consider in this paper the problem of determining Robin's coefficient φ, by using boundary measurements on a part K of the boundary $\partial \Omega$, the results given in this work are of three kinds:

- Identifiability
- Stability
- Identification

Let Ω be a simply connected domain of \mathbb{R}^2 with a boundary $\partial \Omega$ a $C^{2,\beta}$ ($\beta > 0$) Jordan curve divided into three connected parts:

$$\partial \Omega = \tilde{\gamma} \cup \overline{\Gamma_D} \cup \overline{\Gamma_N}$$

Let be K a subset of Γ_N having an accumulation point a which belongs to the interior of Γ_N.

The direct problem is therefore given by:

$$\begin{cases}
\Delta u = 0 & \text{in } \Omega \\
u = 0 & \text{on } \Gamma_D \\
\frac{\partial u}{\partial n} = \phi & \text{on } \Gamma_N \\
\frac{\partial u}{\partial n} + \varphi u = 0 & \text{on } \gamma
\end{cases} \quad (1)$$

where ϕ is a prescribed heat flux on Γ_N, $\psi \in H^{-\frac{1}{2}}(\Gamma_N)$; $\psi \not\equiv 0$ on Γ_N and φ is a continuous function on $\tilde{\gamma}$, to be determined by known $f = u \mid_K$.

In the first part of this work, we prove an optimal uniqueness result, improving the Holmgren's theorem for the Laplace operator. This result is therefore used to prove that the coefficient φ can be determined by a single measure of the temperature f on an infinity part K of $\partial \Omega$.

In the following, we assume that K is a non empty open subset of Γ_N.

The second section of this work is devoted to study the stability of this inverse problem: we prove a local Lipschitz stability of parameters φ with respect to the boundary measurements.

Finally, we gives a numerical method to determine the coefficient φ: the inverse problem is turned into an optimization problem with respect to the parameter φ by using a Kohn & Vogelius like cost function, the only minimum of which is proved to be the unknown coefficient φ. Furthermore, we prove that the derivative of this cost function with respect to a direction ψ depends only on the state u^0, and not on its Lagrangian derivative $u^1(\psi)$.

1