Purpose

Whether for a soldier on the battlefield, the victim of a building collapse, or an experiment on the International Space Station, the goal of the **Structural Acoustics Laboratory** is to develop new technologies in the areas of structural vibrations and acoustics. By gaining a fundamental understanding of the generation, transmission, and radiation mechanisms associated with sound and vibration, the needs of industry, government, and engineering education can be met in these areas.

Goals

- Meet needs of the U.S. military, industry, and other organizations by developing:
 - New noise & vibration control methods
 - Improved modeling and experimental techniques
- Strengthen relationships with industry and government in order to meet current and future needs in engineering workforce development

Research Projects

- Acoustic Sensor Development
- Mild Brain Injury Studies (*new*)
- Automotive NVH Modeling
- Dynamic Force Reconstruction Techniques
- Vibration Control of Space Station Rack Shelf
- Fuel Cell Dynamics and Acoustics
- Structural Damping Evaluation Methods
- Microgravity Vibration Isolation
- Gearbox Active Vibration Control

http://www.me.ua.edu/stal
Capabilities and Instrumentation

To serve the needs of externally supported research, engineering education, and contracted testing, the Structural Acoustics Lab has the following instrumentation and capabilities:

Experiment and Measurement

Acoustics

- **Hemi-Anechoic Chamber**: Detailed Acoustic Characterization
- **Acoustic Intensity** and Source Location
- **Source Directivity** and Other Acoustic Characterizations

Vibrations

- **Vibration Damping & Isolation** Characterization
- **Mode Shape** and Precise Node Location
- **Drive Point Impedance**
- **Low Frequency Measurements** (*DC Accelerometers*)
- **Spatial Vibration Measurements** via **Scanning Laser Vibrometer**

Analysis and Computation

- **Dynamic Simulation and Finite Element Modeling**
- **Acoustic Radiation** and **Structural Vibration Modeling**
- **Acoustic Modeling via Comet Acoustics**
- **Modeling of Structures containing Frequency-Dependent Viscoelastic Materials**
- **Gear Dynamic Modeling via Discrete/Lumped Dynamic Representations**
- **Damping Characterization for Beam- and Plate-Like Structures**

Facilities

- **Hemi-Anechoic Test Chamber**
 - 23′×19.5′×15′ with large access doors
 - 100 Hz ISO3745, NC-19
 - 80 Hz Free Field to 2 meters
 - Reconfigurable to Anechoic, Ventilated

- **Medium Component Sound Enclosure**

- **Small Component Test Lab**

- **Graduate Research Lab and Offices**

Contact

Dr. Steve Shepard
Dept. of Mechanical Engineering, The University of Alabama
Tuscaloosa, AL 35487-0276
(205) 348-0048, sshepard@eng.ua.edu
http://www.me.ua.edu/stal