Turbulence Modeling

At a point in turbulent flow, the velocity components \((u, v, w)\) are fluctuating with time.

At any time, let

\[u = U + u' \]

Assume that NS-5 (Newton-Stokes) eqns are valid, and are constant let \(U = U + u' \)

and \(V = V + v' \), etc., and take time average of NS-5 eqns:

\(\text{(incompressible)} \rightarrow \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} + V \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(u \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) + \frac{\partial}{\partial z} \left(u \frac{\partial u}{\partial z} + w \frac{\partial u}{\partial x} \right) = 0 \)

\[\sum_j \frac{\partial}{\partial x_j} (u_j u') = R.H.S \]

NS terms are same in averaged form except for

\[\sum_j \frac{\partial}{\partial x_j} (u_j u') \]

these terms give rise to "turbulent stress"
Idea: want to model
\[\frac{\partial}{\partial x_j} \left(\overline{u_j u_i} \right) \]

in terms of \(U, V \) and their derivatives.

There are
1) Zero equation models
 a.k.a. algebraic models
2) One-equation models
3) Two-equation models

In reality solution of additional PDE in Domain
Some two-equation models
- \(K-E \) model
- \(K-W \) model
- \(K - turbulence \) kinetic energy
- \(\varepsilon - dissipation \)
- \(\omega - Vorticity \)

Mixing length model - simple idea due to Prandtl based on idea that turbulent flow moves in large "chunks" that mix together over some distance \(L \) in the mixing length.

Let turbulent shear stress be defined analogous to molecular shear stress
\[\tau_{xy} = \mu_T \frac{\partial U}{\partial y} \]
Where the "eddy viscosity" ν_T is

$$\nu_T = \frac{1}{2} \frac{d \langle u \rangle}{dy}$$

so that

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2} \frac{d \langle u \rangle}{dy}$$

The algebraic model gives a reasonable result for:

- confined flow (channel/pipes)
- jets
- wakes

Not good for recirculating flows

Recirculating flow

Fidap has several models:
1) mixing length
2) $k-\varepsilon$
3) k-ω

Consult Tutorial Manual and Theory Manual for assistance
Solve pipe flow for turbulent case

Set

* TURBULENT in PROBLEM command
 - specify turbulent viscosity model
 - MIXING LENGTH
 - TWO-EQUATION, etc
 - specify "WALL" entity on walls

Look at FLUENT tutorial