Types of Closed-Loop Control

• **Servo-mechanisms** require that the output \(C(s) \) “follow” the input \(R(s) \)
 - robot arms & machine tools
 - read/write “head” on hard disk storage device

• **Regulators** attempt to maintain a constant output in the presence of disturbances
 - automobile cruise control (& aircraft autopilot)
 - industrial process control (temperature, flow, pressure, etc.)

Servo-mechanisms

\[R(s) = \text{Input} = \text{“Desired” Output} \]
\[C(s) = \text{Actual Output} \]

\[r(t) \]
\[c(t) \]

This line “implies” than an instantaneous measurement of the actual output \(C(s) \) is available to be subtracted from the “desired” input value \(R(s) \) --- Not always true!

Thickness Control

Time delay, \(\tau_d = \frac{L}{v} \)

Control action applied here

Hot Water Heater with Remote Sense

Figure 11.13 from *System Dynamics and Control*, E. Umez-Eronini, PWS Publishing
Hot Water Heater

System Equation (Conservation of Energy)
\[C \frac{d\theta}{dt} = q - \frac{\theta}{R} \]
- \(C\) = thermal capacitance of water, \(\text{watt-sec}/^\circ C\)
- \(q\) = energy input to water from heater, \(\text{watt}\)
- \(R\) = thermal resistance of tank, \(^\circ C/\text{watt}\)
- \(\theta\) = relative temperature of tank, \((\theta = T_{\text{water}} - T_{\text{ambient}}), ^\circ C\)

Simulation #1
- **Simulate using Simulink™**

RC = 25 seconds (1st order time constant)

Simulation #2
- **Simulate using Simulink™**

Set \(\tau_d\) = 1 sec, 2 sec, 3 sec, 4 sec, 5 sec
Stable Unstable

Pure Time (transport) Delay, \(\tau_d\)

\[G(s) = e^{-s\tau_d} \rightarrow \angle G(j\omega) = -\tau_d\omega \]

Stability Limits w/Delay

\[\Phi_M = 0^\circ \]
\[\Phi_M = 75^\circ \]
\[\Phi_M = 50^\circ \]
Ziegler-Nichols PID Tuning

- The Ziegler-Nichols Closed-Loop Tuning Method looks at the response of the system under proportional only control to obtain “ideal” PID settings (leads to “quarter decay”).
 - Set up the system with proportional only control and add a disturbance (or change the input).
 - Alter the proportional gain process until you obtain the smallest gain which gives constant amplitude oscillations. This is the Ultimate Gain, \(K_{CU} \).
 - Find the period of these constant oscillations. This is known as the Ultimate Period, \(P_U \).

Ziegler-Nichols Gains

- Based on the “ultimate” gain, \(K_{CU} \), and the “ultimate” period, \(P_U \), set the PID (or just P or PI) controller gains as:

\[
P = K_c \left(1 + \frac{1}{\tau_s} + \frac{1}{\tau_d} \right)
\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>(K_c)</td>
</tr>
<tr>
<td>PI</td>
<td>(K_c + \frac{K_c}{\tau_s})</td>
</tr>
<tr>
<td>PID</td>
<td>(K_c \left(1 + \frac{1}{\tau_s} + \frac{1}{\tau_d} \right))</td>
</tr>
</tbody>
</table>

\(K_c = K_{CU} \)

Sample Problem #1

- When \(\tau_d = 4.25 \) sec, \(K_{CU} = 10 \)
- What is \(P_U \)?
- What are Z-N gains \((K_p, K_i, K_d) \)?

Sample Problem #2

- When \(\tau_d = 1 \) sec, what is \(K_{CU} \)?
- What is \(P_U \)?
- What are Z-N gains \((K_p, K_i, K_d) \)?

Ideal and Approximate Derivative Terms

\[G_{\text{ideal}}(s) = s \]

\[G_{\text{approx}}(s) = \frac{1}{\tau s + 1} \]

Amplifies high frequency “noise” (which typically exists in real systems)

Low pass filter with break frequency \(\omega_b = 1/\tau \)