Controller Design via Freq. Response

- **Proportional control (K only)**
 - desired phase margin related to damping ratio
 - desired static error constants adjusted by K

- **Lag compensators**
 - reshape low frequency response to obtain desired error constant with required transient response

- **Lead compensators**
 - reshape “high” frequency response to get desired phase margin

lead compensation

\[
G_c(s) = \frac{1}{\beta} \frac{s}{\beta s + 1} \quad \beta < 1
\]

Definition - Bandwidth

- **Bandwidth** \(\omega_{BW}\), is the frequency at which the closed-loop frequency response is 3 dB below its “zero” frequency value (p. 579 of text)
 - “zero” frequency would be approximated by a very small frequency
 - if you roughly approximated your closed loop system as first order (i.e., a low pass filter), this would be the “break” frequency

Peak Time and Bandwidth

- **Lead Compensator Design** (p. 628)
 - Find closed-loop bandwidth \(\omega_{BW}\) required for transient performance
 - Set gain K of compensator to give desired steady-state error
 - Find \(\Phi_m\) for this gain K and determine how much phase required by lead comp.
 - Select \(\beta\) and T from requirements and re-draw the Bode plots
 - Reset overall gain due to change by lead
Problem #12 - initial

\[C(s) \overset{+}{-} R(s))20)(5(\]

When \(K = 10 \), the system has about 55% overshoot and a peak time of 0.5 sec. Find \(K \) for this initial setting.

Use Matlab™

Bode Plot with \(K = 1 \)

\[R(s) \overset{K}{\rightarrow} C(s) \]

Bode Plot with \(K = 1000 \)

Closed-Loop Bandwidth

\[R(s) \overset{1000}{\rightarrow} C(s) \]

Find the bandwidth (\(\omega_B \)) of the closed-loop system at this gain of \(K = 1000 \) Use Matlab™

Bandwidth ~10 rad/sec

Lead Compensation

10% OS \(\rightarrow \) \(\zeta = 0.59 \rightarrow \phi_M = 59^\circ \)

We have \(\Phi_M = 20^\circ \) need extra \(39^\circ +11^\circ \)

\[\omega_{\text{max}} = 50^\circ = \sin^{-1} \left(\frac{1-\beta}{1+\beta} \right) \]

\[\beta = 0.13 \]

From \(K = 1000 \) plot, at -9 dB, \(\omega_{\text{max}} \approx 10.5 \) rad/sec

\[\gamma_c(\omega_{\text{max}}) = 20 \log_{10} \left(\frac{1}{\sqrt{\beta}} \right) \]

\[T = 0.26 \]

\[\omega_{\text{max}} = \frac{1}{T \sqrt{\beta}} \]
Lead Compensator

\[G_c(s) = \frac{1}{\beta} \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} = \frac{1}{0.13} \frac{s + 0.26}{s + 0.13 \times 0.26} \]

\[G_c(s) = \frac{7.7}{s + 29.3} \]

Problem #12 - w/compensator

\[C(s) = \frac{1000 \cdot 7(s + 3.8)}{(s + 5)(s + 20)} \]

Check final answer with time domain (step input) solution

Use Matlab™

Phase Margin w/Compensator #2

\[\Phi_M \approx 20° \]

From K=1000 plot, at -13 dB, \(\omega_{max} \approx 13 \) rad/sec

Lead Compensation #2

\[G_c(s) = \frac{1}{\beta} \frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} = \frac{1}{0.05} \frac{s + 0.34}{s + 0.05 \times 0.34} \]

\[G_c(s) = \frac{20}{s + 60} \]

Problem #12 - w/compensator #2

\[C(s) = \frac{1000 \cdot 20(s + 3)}{(s + 5)(s + 20)} \]

Check final answer with time domain (step input) solution

Use Matlab™
Phase Margin w/Compensator

Bandwidth ~20 rad/sec

Phase Margin ~48°

Bandwidth ~20 rad/sec

-3 dB