\[\text{Real Power} \quad KW \quad \text{(purely resistive load)} \]

\[\text{Power Factor} \]

\[\text{KVA} = \text{Volts} \times \text{Amps} \times \text{KVA} \]

\[\text{KW} = \text{KVA} \times \cos \theta \]

\[\text{kVAR} = \text{KVA} \times \sin \theta \]

Note: Electric Company will charge a penalty if customers' power factor is too low.

Two methods:
1) Change demand based on KVA
2) Impose penalty for low power factor (typically when \(\cos \theta < 0.9 \))

How to "correct" power factors?
Add some capacitance to "pull" the real KVA back toward the real axis.
\[\text{KW} = \frac{V \cdot A \cdot N_p \cdot \text{PF}}{\text{KVA} \cdot \cos \theta} \]

\[\text{KVAR} = \text{KVA} \cdot \sin \theta \]

\[\text{KVAR} = \frac{\text{KW} \cdot \sin \theta}{\cos \theta} \]

\[\cos \theta = 0.82 \]

\[\theta = \cos^{-1}(0.82) \]

\[\sin \theta = _ \]

Power Factor vs. % Amps

Lighting Systems

Industrial Lighting

High Intensity Discharge (HID)

- Mercury Vapor: White Light
- Sodium: Yellowish light
- Metal Halide: White light

Efficacy of lighting - Lumens/Watt

Sodium lights have highest efficacy of all types

Fluorescent lighting is becoming very popular for industrial applications

> T-12

> T-8

> T-5

Number of \(\frac{1}{8} \)" Diameter of bulbs