Closed book, closed notes. Short answer questions - use the space provided for written answers.

1. [8] Define these terms that apply to position and velocity sensors (use words and/or a sketch as needed).
 a) LVDT

 b) absolute encoder

 c) optical encoder

 d) LVT

2. [6] The setup below is used to measure angular velocity of a shaft. The gear tooth had 8 lobes that are sensed by the magnetic pickup. In a 0.65 second period, a total of 375 pulses are counted. What is the angular velocity in RPM? What is the resolution of this measurement?

 ![Diagram of the setup with a gear tooth and a magnetic pickup]
3. [6pt] An AC induction motor has 4 poles and operates on 115 VAC, 50 Hz input voltage.
 a) What is the shaft speed if the motor operates at 8% slip?
 b) What is the motor’s torque if it develops the full 1.5 hp rated output power at the speed determined in (a)?

4. [10] Select and briefly justify the single "best" motor from the list below for each of the following applications (a motor type can be selected only once):
 - DC motor (w/brushes)
 - brushless DC motor
 - universal motor
 - split phase AC motor
 - PSC AC motor
 - shaded pole AC motor

 a) window air conditioner fan
 b) electric can opener
 c) starter for a motorcycle
 d) swimming pool pump
 e) vacuum cleaner
Closed book, closed notes, one hand-written formula sheet allowed.

5. [20 pt] A thin walled pressure vessel is instrumented with two strain gages to measure hoop strain.
 a) Draw the Wheatstone bridge with strain gages located such that an increase in pressure, P, causes an increase in the output voltage, E_{out}.
 b) Determine the Wheatstone bridge output voltage, E_{out}, and the uncertainty $U_{E_{out}}$, for these parameters:
 - Pressure, $P = 25$ psi $\pm 1\%$
 - Wall thickness, $t = 0.0035 \pm 0.0002$ in
 - Gage factor, $F = 2.15$ (assume exact)
 - $E_{alum} = 11 \times 10^6$ lbf/in2 (assume exact)
 - Poisson’s ratio for aluminum $= 0.33$
 - Diameter, $d = 2.50$ inch ± 0.01 inch
 - Input voltage, $E_{in} = 12.6$ volts $\pm 2\%$

6. [10 pt] A plot of experimental data for the step response of a 1$^{\text{st}}$ order system is given below.
 a) Determine the time constant for the system.
 b) If the 1$^{\text{st}}$ order system consists of a capacitor and a resistor in series, determine the capacitance, C, if the resistance is $R = 1234 \Omega$.

![Graph of experimental data for the step response of a 1$^{\text{st}}$ order system with time on the x-axis and input/output voltage on the y-axis.](image-url)

- Determine the natural frequency, ω_n (in Hz and rad/sec) for the system using the data given.
- Determine the uncertainty in the natural frequency, U_ω_n, (in Hz and rad/sec) for the system using the data given.
- Determine the spring stiffness, K, in units of lbf/in if the mass weighs 3.5 lbf at sea level.

<table>
<thead>
<tr>
<th>Time</th>
<th>Position</th>
<th>Time</th>
<th>Position</th>
<th>Time</th>
<th>Position</th>
<th>Time</th>
<th>Position</th>
<th>Time</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec</td>
<td>inch</td>
<td>sec</td>
<td>inch</td>
<td>sec</td>
<td>inch</td>
<td>sec</td>
<td>inch</td>
<td>sec</td>
<td>inch</td>
</tr>
<tr>
<td>0.00</td>
<td>1.081</td>
<td>0.20</td>
<td>-1.681</td>
<td>0.40</td>
<td>1.588</td>
<td>0.60</td>
<td>-0.959</td>
<td>0.80</td>
<td>0.112</td>
</tr>
<tr>
<td>0.02</td>
<td>1.980</td>
<td>0.22</td>
<td>-1.451</td>
<td>0.42</td>
<td>0.513</td>
<td>0.62</td>
<td>0.432</td>
<td>0.82</td>
<td>-1.055</td>
</tr>
<tr>
<td>0.04</td>
<td>1.044</td>
<td>0.24</td>
<td>0.107</td>
<td>0.44</td>
<td>-1.011</td>
<td>0.64</td>
<td>1.399</td>
<td>0.84</td>
<td>-1.230</td>
</tr>
<tr>
<td>0.06</td>
<td>-0.832</td>
<td>0.26</td>
<td>1.535</td>
<td>0.46</td>
<td>-1.577</td>
<td>0.66</td>
<td>1.062</td>
<td>0.86</td>
<td>-0.272</td>
</tr>
<tr>
<td>0.08</td>
<td>-1.907</td>
<td>0.28</td>
<td>1.526</td>
<td>0.48</td>
<td>-0.684</td>
<td>0.68</td>
<td>-0.243</td>
<td>0.88</td>
<td>0.916</td>
</tr>
<tr>
<td>0.10</td>
<td>-1.209</td>
<td>0.30</td>
<td>0.116</td>
<td>0.50</td>
<td>0.819</td>
<td>0.70</td>
<td>-1.299</td>
<td>0.90</td>
<td>1.240</td>
</tr>
<tr>
<td>0.12</td>
<td>0.584</td>
<td>0.32</td>
<td>-1.373</td>
<td>0.52</td>
<td>1.540</td>
<td>0.72</td>
<td>-1.142</td>
<td>0.92</td>
<td>0.419</td>
</tr>
<tr>
<td>0.14</td>
<td>1.806</td>
<td>0.34</td>
<td>-1.571</td>
<td>0.54</td>
<td>0.833</td>
<td>0.74</td>
<td>0.061</td>
<td>0.94</td>
<td>-0.770</td>
</tr>
<tr>
<td>0.16</td>
<td>1.345</td>
<td>0.36</td>
<td>-0.323</td>
<td>0.56</td>
<td>-0.625</td>
<td>0.76</td>
<td>1.183</td>
<td>0.96</td>
<td>-1.229</td>
</tr>
<tr>
<td>0.18</td>
<td>-0.341</td>
<td>0.38</td>
<td>1.197</td>
<td>0.58</td>
<td>-1.480</td>
<td>0.78</td>
<td>1.197</td>
<td>0.98</td>
<td>-0.550</td>
</tr>
</tbody>
</table>

8. [20pt] A test of a DC permanent magnet motor operated at an armature voltage of $V_a=48\text{ volts}$ generated the torque-speed data points plotted below. Determine:

a) the motor's "no-load" speed, $\omega_{N,L}$, in RPM and rad/sec,

b) the motor’s theoretical back-EMF constant, k_b,

c) the motor’s theoretical torque constant, k_a, and

d) the motor’s theoretical resistance, R_a.

![Graph of torque-speed data](image-url)