Proximity and Limit Switches

- A variety of sensors are available that give ON/OFF (or yes/no) binary outputs
- Mechanical limit switches
 - often called “microswitches”
 - activation causes electrical contacts to either “break” (“normally closed” or NC switch) or “make” (“normally open” or NO switch) - or both NC and NO
- More sophisticated binary sensors are collectively known as proximity switches
Standard Basic Switches

- Polished stainless steel plunger for long accurate performance
- Rugged brass cover pin (2)
- Fine silver contacts (standard)
- High grade phenolic cover and case
- Elongated hole for easier, more accurate mounting
- Long-life, one-piece beryllium copper spring
- Step construction for additional dielectric spacing (bottom facing screw terminals only)
- Bottom facing screw terminals shown. Also available are side facing screw and solder terminals
Standard Basic Switches

1. Roller leaf; Low-force, large movement actuation
2. Lever; Very low force, slow cams and slides
3. Leaf; Low-force, slow moving cams or slides
4. Roller lever; Very low force, fast moving cams
Standard Basic Switches

- Pin plunger; In-line motion
- Overtravel plunger; In-line applications requiring additional overtravel
- Panel-mount roller plunger; Actuation by cams
- Panel-mount plunger; Heavy-duty in-line applications or slow cams. Cam rise should not exceed 30°
Switch Contact Configurations

- **Single pole, single throw (SPST)**
 - Normally Open (NO)
 - Schematic: [COM](#)

- **Single pole, single throw (SPST)**
 - Normally Closed (NC)
 - Schematic: [COM](#)

- **Single pole, double throw (SPDT)**
 - NC
 - NO
 - Schematic: [COM](#)

- **Double pole, double throw (DPDT)**
 - NC1
 - NO1
 - NC2
 - NO2
 - Schematic: [COM1](#) [COM2](#)
Mercury Switch

Contacts

Mercury “puddle”

SHAFTE

TILT

BIMETAL STRIP
Photoelectric Proximity Sensor

Current limiting resistor

Small current flows through transistor

\[V_{\text{OUT}} \sim \]
Photoelectric Sensor - Blocked

\[V_S \]

Sense resistor
No current

\[V_{OUT} \sim \]
Current limiting resistor usually "small"

\[i \sim 10-30 \text{ mA} \]

\[\sim 1.2-1.7 \text{ V} \]

Sense resistor usually large

\[10K\Omega \text{ to } 100K\Omega \]

\(V_s \) (anode)

\(A \)

\(K \) (cathode)

\(V_s \)

\(C \) (collector)

\(E \) (emitter)
There are three basic types of photoelectric sensors. Transmitted beam, or through-beam, requires a sender and a receiver. Retroreflective senses light returning from a reflector. Both types switch an output when the beam is broken. Diffuse sensors sense light returning from the object to be detected and switch the output when it senses.

http://www.manufacturing.net/ctl/article/CA204923
Conveyor/Material Handling
A retroreflective sensor was chosen to look across the conveyor at the retroreflective sensor.
When the book blocks the beam, a signal is given to stop the conveyor.

Truck Height Control
A long range through-beam sensor was positioned at a height just below the overhanging roof and a couple of feet in front, so the breaking of the beam would activate an output wired to an alarm alerting the driver to stop.
Automatic Door Opener

from Warner

MCS-165

Retro-Mirror
Case Sorting - By Size

from Warner

MCS-144

Retro-Mirrors

Large Cases Conveyor

Medium Cases Conveyor
Production Counting

from Warner
Reflective Photoelectric

“This type of sensor utilizes a special reflector to return the beam directed at it from the sensor. An object between the sensor and reflector is sensed when it interrupts the beam. Medium sensing range. “

http://www.westernextralite.com/resources/basicsensor.htm
Inductive Proximity Sensor

Coil of wire forms inductor, L

Inductive Sensor Considerations

from Sick
Ultrasonic Proximity Sensing

High frequency (200 kHz) sound waves reflect from object
Ultrasonic Proximity Sensing

\[
\text{Distance} = \frac{(\text{Speed of sound in air}) \times \Delta T}{2}
\]
Proximity Switches

Industrial Automation by D.W. Pessen, Wiley Interscience

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Targets</th>
<th>Sense Distance (typ. max)</th>
<th>Switch Rate (typ. max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit switch</td>
<td>Any</td>
<td>0 (physical contact req'd)</td>
<td>3 Hz</td>
</tr>
<tr>
<td>Mercury switch</td>
<td>Any</td>
<td>0 (physical contact req'd)</td>
<td>3 Hz</td>
</tr>
<tr>
<td>Reed switch</td>
<td>Magnet</td>
<td>20 mm</td>
<td>500 Hz</td>
</tr>
<tr>
<td>Photo-electric</td>
<td>Opaque</td>
<td>0.1 to 50 m, depends on target shape</td>
<td>100-1000 Hz</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>Nonporous, large</td>
<td>30 mm to 10 m</td>
<td>50 Hz</td>
</tr>
</tbody>
</table>
Proximity Switches

Industrial Automation by D.W. Pessen, Wiley Interscience

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Targets</th>
<th>Sense Distance (typ. max)</th>
<th>Switch Rate (typ. max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductive</td>
<td>Conductive material</td>
<td>Ferrous: 50 mm, Non-ferrous: less</td>
<td>300-5000 Hz</td>
</tr>
<tr>
<td>Capacitive</td>
<td>Most solids, liquids</td>
<td>30 mm</td>
<td>500 Hz</td>
</tr>
<tr>
<td>Magnetic inductance</td>
<td>Ferromagnetic</td>
<td>50 mm (depends on target mass)</td>
<td>300 Hz</td>
</tr>
<tr>
<td>Hall effect</td>
<td>Magnet</td>
<td>20 mm</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Wiegand effect</td>
<td>Magnet</td>
<td></td>
<td>100 kHz</td>
</tr>
</tbody>
</table>
Proximity Switches

Industrial Automation by D.W. Pessen, Wiley Interscience

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Environmental Sensitivities</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit switch</td>
<td>Temperature, moisture</td>
<td>Simple, inexpensive</td>
<td>Physical contact, arcing</td>
</tr>
<tr>
<td>Mercury switch</td>
<td>Vibration, mounting angle</td>
<td>Low contact resistance, sealed unit</td>
<td>Physical contact, SPST contacts only</td>
</tr>
<tr>
<td>Reed switch</td>
<td>Vibration</td>
<td>Small size, inexpensive</td>
<td>Contact arcing, magnet actuator</td>
</tr>
<tr>
<td>Photo-electric</td>
<td>Dust, dirt, ambient light</td>
<td>Good resolution</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>Noise, air motion</td>
<td></td>
<td>Poor resolution, large target</td>
</tr>
</tbody>
</table>
Proximity Switches

Industrial Automation by D.W. Pessen, Wiley Interscience

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Environmental Sensitivities</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductive</td>
<td>Other nearby sensors</td>
<td>Usually fails ON, good resolution</td>
<td>Complex circuitry, false triggering</td>
</tr>
<tr>
<td>Capacitive</td>
<td>Humidity, temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic inductance</td>
<td>Other nearby sensors</td>
<td>Good resolution</td>
<td>Collects debris, no static sense</td>
</tr>
<tr>
<td>Hall effect</td>
<td>Temperature</td>
<td>Simple, inexpensive</td>
<td>Poor resolution, needs magnet</td>
</tr>
<tr>
<td>Wiegand effect</td>
<td></td>
<td></td>
<td>No static sense, magnet</td>
</tr>
</tbody>
</table>
Limit & Proximity Switch Applications

- Don't use the limit switch as a mechanical stop (use another component)
- Use cam surfaces to allow gradual actuation
- Don't apply side forces to the switch roller or lever (will wear bearings quickly)
- Use appropriate switch actuator for type of force/motion applied
- Don't switch excessive currents through the switch contacts
Factors in Selecting Limit & Proximity Switches

- Type of output signal (high/low voltage?, high/low current?, DC or AC?, relay or triac?)
- Is mechanical contact with sensed object OK?
- Available space
- Environmental conditions
- Nature of target: size, shape, material, surface
Factors in Selecting Limit & Proximity Switches

► Sensor-to-target distance (max and min)
► Positional accuracy required
► Speed of target (will it remain in sensing area long enough?)
► Switching rate - how often will inputs be presented to the sensor? Can it recover quickly?
► Reliability and life expectancy - can you detect a failure?
Prox Sensor Output - NPN

Proximity Sensor

NPN output
or
Open-Collector output
or
Current "sinking" output
Prox Sensor Output - NPN

Proximity Sensor

Typically +5V, +12V or +24V

External sense (or load) resistor

V_S

V_{OUT}
Prox Sensor Output - PNP

Proximity Sensor

PNP output or Current "sourcing" output
Prox Sensor Output - PNP

Typically +5V, +12V or +24V

Proximity Sensor

Vs

External sense (or load) resistor

Vout
Both NPN and PNP outputs