Derived for a fin w/o heat generation:

\[\frac{d^2T}{dx^2} = \frac{hP}{kAc} (T - T_{env}) \]

So if we include \(q^{"} \) then

\[\frac{d^2T}{dx^2} + \frac{q^{"}}{k} = \frac{hP}{kAc} (T - T_{env}) \]

B.C.'s:

\(x=0 \) \(T=T_0 \) or \(T(0)=T_0 \)

\(x=L \) \(q_{conv} = q_{conv} \)

Fourier Law

\[-k \frac{dT}{dx} \bigg|_{x=L} = \hat{q}_{conv} \]

How to solve?

Let \(\Theta(x) = T(x) - T_{env} \)

Then

\[\frac{d^2\Theta}{dx^2} + \frac{q^{"}}{k} = \frac{hP}{kAc} \Theta \]

Look for \(\Theta(x) = \Theta_h(x) + \Theta_p(x) \)
\[\frac{d^2 \Theta_n}{dx^2} = \frac{k}{kAcs} \Theta_n \]

Solution is:
\[\Theta_n(x) = C_1 e^{-mx} + C_2 e^{+mx} \]

\[m = \sqrt{\frac{hp}{kAcs}} \]

\[\Theta_p(x) = ? \]

\[\Theta_p(x) = A x + B \]

\[\frac{d \Theta_p}{dx} = A \]

\[\frac{d^2 \Theta_p}{dx^2} = 0 \]

Assign this form to substitute into equation:
\[0 + \frac{q_{\text{ext}}}{k} = \frac{hp}{kAcs} (Ax + B) \]

\[0 \cdot x' + \frac{q_{\text{ext}}'}{k} = (A) \frac{hp}{kAcs} x + B \frac{hp}{kAcs} \]

Equate like terms on both sides:
\[0 = A \left(\frac{hp}{kAcs} \right) \]

\[\Rightarrow A = 0 \]

So:
\[\Theta_p(x) = \frac{q_{\text{ext}}}{hp} Acs \]

And:
\[\Theta(x) = \Theta_n(x) + \Theta_p(x) \]

\[= C_1 e^{-mx} + C_2 e^{+mx} + \frac{q_{\text{ext}}}{hp} Acs \]

Use B.C.s to find \(C_1, C_2 \)
\[\Theta(0) = T_0 - T_{aw} = \Theta_0 = C_1 + C_2 + \frac{q_0}{hp} \]

relating \(b/w \) \(C_1 \) and \(C_2 \)

other B.C.

\[k \left(\frac{1}{L} + \frac{mC e^{-ml} + C_2 e^{ml} + q_0 Acs}{hp} \right) = \]

\[\frac{d^2 \Theta}{dx^2} \]

\[h \left(C e^{-ml} + C_2 e^{ml} + q_0 Acs \right) \]

Pick up discussion on extended surface (w/o heat generation)

\[\frac{d^2 \Theta}{dx^2} = m^2 \Theta \]

\[m^2 = \frac{hp}{kAcs} \]

Start solution is

1. \(\Theta(x) = C_1 e^{-mx} + C_2 e^{mx} \)

Recall \(\cosh(x) = \frac{e^x + e^{-x}}{2} \)

\(\sinh(x) = \frac{e^x - e^{-x}}{2} \)

Alternate form of \(\cosh(x) \)

2. \(\Theta(x) = C_3 \cosh(x) + C_4 \sinh(x) \)
How to find constants?
Use Boundary conditions.
One B.C. always will be \(T(0) = T_0 = T_0 \)
So \(\theta(0) = T_0 - T_{\text{env}} = \theta_0 \)
What's going on at \(x = L \) ???
Four cases to consider

(A) Fin is "very long"
 as \(x \to \infty \)
 \(\theta \to 0 \)
 For form of (1), see at \(x \to \infty, \theta \to \infty \)
 if \(C_2 \neq 0 \)
 So, for a long fin, must have \(C_2 = 0 \)
 \(\theta(x) = C_1 e^{-mx} \)
 use \(\theta(0) = \theta_0 = C_1 e^{-m0} = C_1 \)
 \(\theta(x) = \theta_0 e^{-mx} \) "Long" fin

(B)