For compressed liquid, if compressed liquid data are not available,

\[u(P,T) \approx u_f(T) \]
\[v(P,T) \approx v_f(T) \]
\[S(P,T) \approx S_f(T) \]

\[h(P,T) = ? \quad h = u + Pv \]
\[h(P,T) \approx u_f(T) + v_f(T) \times (P - P_{sat}) \]

\[h_f(T) + v_f(T) \times (P - P_{sat}) \]
2-phase mixture

\[X = \text{quality} = \frac{\text{fraction of mixture that is vapor}}{\text{total mass}} \]

\[X = \frac{M_{\text{vapor}}}{M_{\text{total}}} = \frac{M_{\text{vapor}}}{M_{\text{sat}} + M_{\text{vapor}}} \]

\[h_{\text{mix}} = h_f + X(h_f - h_g) \]

\[h_f = h_h - h_f \]

Note: \(X \) only defined for 2-phase region, \(0 \leq X \leq 1 \)

- If compute \(X \geq 1.0 \) and no math error \(\rightarrow \) really superheated
- If compute \(X \leq 0.0 \) and no math error \(\rightarrow \) really compressed
Superheated region - value not exactly in table + linear interpolation

\[S \]

\[P = 500 \text{ kPa} \]

\[S_1, S_2, S, S \]

\[T_1, T, T_2, T \]

Slope = constant = \(\frac{S - S_1}{T - T_1} = \frac{S_2 - S_1}{T_2 - T_1} \)

Solve for 'S' as function

\[S = S_1 + \left(\frac{T - T_1}{T_2 - T_1} \right) (S_2 - S_1) \]

CARNOT cycle

Fully reversible cycle

Four processes

1 \(\rightarrow \) 2 reversible adiabatic compression
2 \(\rightarrow \) 3 reversible isothermal expansion (heat addition)
3 \(\rightarrow \) 4 reversible adiabatic expansion
4 \(\rightarrow \) 1 reversible isothermal heat rejection
Second Law of Thermodynamics

\[\eta_{th} < 1 \]

Maximum thermal efficiency is for a reversible cycle (such as Carnot) for which

\[\frac{Q_L}{Q_H} = \frac{T_L}{T_H} \]

And

\[\eta_{th}^{\text{rev}} = \frac{T_H - T_L}{T_H} = 1 - \frac{T_L}{T_H} \]

Carnot cycle on T-S diagram

Clockwise
OPEN BOOK/OPEN NOTES. Work this problem as you would any homework problem.

1. Determine the following properties. What phase(s) (compressed liquid, saturated mixture, superheated vapor) are present for each state?

<table>
<thead>
<tr>
<th>State Description</th>
<th>Property</th>
<th>Phase(s) present</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O at 120°C, 5MPa</td>
<td>(u = 501.9 \text{ kJ/kg} \text{kg}) (\approx 503.6 \text{ kJ/kg} \text{kg})</td>
<td>Compressed Liq.</td>
</tr>
<tr>
<td>H₂O at 190°C, (h = 1982.2 \text{ kJ/kg})</td>
<td>(v = 0.09169 \text{ m}^3/\text{kg})</td>
<td></td>
</tr>
<tr>
<td>H₂O at 300°C, 0.5 MPa</td>
<td>(s = 7.4614 \text{ kJ/kg-K})</td>
<td>Superheated</td>
</tr>
</tbody>
</table>

a) \(P > P_{\text{sat}} \) \(T \Rightarrow \) Compressed Liq. \(P \quad s \quad L \quad V \)

b) \(x = \frac{1982.2 - 807.43}{1977.9} = 0.5939 \)

\(x = u + x \cdot s \frac{\text{d}u}{\text{d}s} \) \(= 0.001141 + (0.5939)(0.15636 - 0.001141) \)

\(h_f \text{LH} \text{P} \text{H} \text{G} \text{V} \Rightarrow \) two phase mixture \(P \quad Lg \quad Vap \)

c) \(T \quad P \quad s \quad L \quad V \)